Induction of miR-96 by Dietary Saturated Fatty Acids Exacerbates Hepatic Insulin Resistance through the Suppression of INSR and IRS-1

نویسندگان

  • Won-Mo Yang
  • Kyung-Ho Min
  • Wan Lee
چکیده

Obesity is defined as the excessive accumulation of body fat that ultimately leads to chronic metabolic diseases. Diets rich in saturated fatty acids (SFA) exacerbate obesity and hepatic steatosis, which increase the risk of hepatic insulin resistance and type 2 diabetes (T2DM). Although microRNAs (miRNAs) play an important role in a range of biological processes, the implications of SFA-induced miRNAs in metabolic dysregulation, particularly in the pathogenesis of hepatic insulin resistance, are not well understood. This study investigated the implications of miR-96, which is induced strongly by SFA, in the development of hepatic insulin resistance. The liver of HFD mice and the palmitate-treated hepatocytes exhibited an impairment of insulin signaling due to the significant decrease in INSR and IRS-1 expression. According to expression profiling and qRT-PCR analysis of the miRNAs, the expression level of miR-96 was higher in hepatocytes treated with palmitate. Moreover, miR-96 was also upregulated in the liver of HFD mice. Interestingly, miR-96 targeted the 3'UTRs of INSR and IRS-1 directly, and repressed the expression of INSR and IRS-1 at the post-transcriptional level. Accordingly, the overexpression of miR-96 was found to cause a significant decrease in INSR and IRS-1 expression, thereby leading to an impairment of insulin signaling and glycogen synthesis in hepatocytes. These results reveal a novel mechanism whereby miR-96 promotes the pathogenesis of hepatic insulin resistance resulted from SFA or obesity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Data on the expression and insulin-stimulated phosphorylation of IRS-1 by miR-96 in L6-GLUT4myc myocytes

Diets containing a high saturated fatty acid (SFA) increase the risk of metabolic diseases, and microRNAs (miRNAs) induced by SFA have been implicated in the pathogenesis of insulin resistance and type 2 diabetes. In a previous report, miR-96 is found to be upregulated by SFA and involved in the suppression of insulin signaling intermediates, leading to insulin resistance in hepatocytes (Yang e...

متن کامل

Data on the expression of PEPCK in HepG2 hepatocytes transfected with miR-195

Dietary fats rich in saturated fatty acid (SFA) increase the risk of metabolic diseases, and certain microRNAs (miRNAs) dysregulated by SFA are associated with the pathogenesis of insulin resistance and type 2 diabetes. A previous study found that miR-195 is increased by SFA and impairs hepatic insulin signaling through the suppression of INSR (Yang et al., 2014) [1]. This article reports accom...

متن کامل

Saturated fatty acid-induced miR-195 impairs insulin signaling and glycogen metabolism in HepG2 cells.

MicroRNAs (miRNAs) play an important role in insulin signaling and insulin secretion, but the role of miRNAs in the association between obesity and hepatic insulin resistance is largely unknown. This study reports that saturated fatty acid (SFA) and high fat diet (HFD) significantly induce miR-195 expression in hepatocytes, and that the insulin receptor (INSR), not insulin receptor substrate-1 ...

متن کامل

Data for differentially expressed microRNAs in saturated fatty acid palmitate-treated HepG2 cells

Certain microRNAs (miRNAs) targeting the molecules in the insulin signaling cascades are dysregulated by saturated fatty acids (SFA), which can lead to insulin resistance and type 2 diabetes. This article reports the accompanying data collected using miRNAs microarrays to identify the changes in miRNA expression in HepG2 cells treated with SFA palmitate. Differentially expressed miRNA analyses ...

متن کامل

Data on the decreased expression of FOXO1 by miR-1271 in HepG2 hepatocytes

Obesity and metabolic diseases are closely associated with insulin resistance. Obesity-induced miRNAs are also considered to be potential contributors to the development of insulin resistance and type 2 diabetes. Previously, the expression of miR-1271 was reported to be upregulated in the liver of diet-induced obese mice (Yang et al., 2016) [1]. In this data article, multiple in silico analysis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016